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ABSTRACT

Recent interest in wind energy has increased the demand for accurate methods of wind
turbine analysis. The purpose of this study was to make improvements to an existing
AeroVironment wind turbine analysis computer code, PROP, developed by Wilson and
Lissaman.

This involved analyzing two existing rotors, comparing the analytical results with
experimental data, and making adjustments to the code, as required by comparing theory
and experiment. Modifications to the code included addition of windmill brake state and
wind shear effects, and refining treatment of blade airfoil characteristics.

The existing rotors analyzed with the modified code were the Enertech 1500 rotor and a
one-third scale model of the UTRC 8 kW turbine. For the Enertech rotor, experlmental
data compared well with theory, with the worst error being on the order of 0.04 in power
coefficient at a tip speed ratio of 5. The maximum theoretical power coefficient was
0.397, compared to 0.37 for the data. For the UTRC turbine, the data did not compare
well with theory. The discrepancy was greatest at a tip speed ratio of 8, where the theory
gave a power coefficient of 0.32, but the data gave only 0.21. It was postulated that the
discrepancy was due to a source of high rotor drag not identified in the experimental test

The overall conclusion is that the model is ready to be used as a design tool, but the user
must have a good working knowledge of the two-dimensional aerodynamic characteristics
of the blade airfoil to be employed.
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EXECUTIVE SUMMARY .~ (g/c
A

The analysis of horizontal axis propellers and turbines has been an area of increased
interest in recent years because of the need to develop adequate analytical tools for the
design and evaluation of wind turbine rotors. Among industry standards is the PROP
computer code developed as a result of the work in the mid-1970s by R.E. Wilson of

Oregon State University and P.B.S. Lissaman of AeroVironment Inc. especiallyfor—wind —

turbine-analysis. The PROP code or modified versions of it have been used successfully in
the design of a number of wind turbines, but no comprehensive effort has been made to
compare analysis and experimental results, due primarily to the lack of well-documented
experimental data for wind turbines.

The purpose of this study was to make improvements in the PROP code, to analyze
two existing rotors, to compare analytical results with experimental data, and to make
adjustments to the code as required by the comparison of theory and experiment. The
approach to the program was to make the performance prediction based only on the
technical specification of the rotors. With the analysis completed, Rockwell International
Energy Systems Group at Rocky Flats, Colorado, provided test data on the two systems
and the comparison between theory and experiment was made. The major items of work
and the results and conclusions of the study are summarized below.

Description of the Analytical Model

The basic computer program used was an updated version of the PROP code developed for
NASA Lewis Research Center. This program computes horizontal axis windmill
performance using Glauert momentum strip theory. The program uses, as input, the twist,
chord, and the lift-drag characteristics of the airfoils at several stations along the blade.
The specification of the airfoil characteristics at each station allows the inclusion of
. Reynolds number effects along the blade length. As the blade rotates, each element
sweeps out an annular strip. The Glauert strip theory determines the windmill
performance by equating the blade forces, both axial and circumferential, determined by
two-dimensional airfoil theory, with the change in momentum of the air going through the
annular strip. Once the change in the momentum is known, the axial and circumferential
interference factors are computed. This allows computation of the flow velocity and
angle of attack at the blade element, closing the problem. Typically, the equations
describing the above process are solved in an iterative manner.

The complete PROP code was rewritten and the following items summarize the analyses
performed and the current status of the code.

L. Prandt! tip loss correction factors for the blade tip and root were included in
the original version and were retained in the improved version.

2. Modifications were made to the basic equations to account for operation in the
windmill brake state. Two models were developed: (1) an advanced model that |>
uses an approximation to Glauert's empirical relationship between head loss— b
coefficient and axial induction to analyze rotor performance above a\head lgss) AR
coefficient of 1.0, and (2) a classical momentum brake state mode! which does Lﬂ\

not permit the head loss coefficient to exceed 1.0.

i
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3.  Wind shear effects were included. These were treated by considering the
variation of horizontal wind speed at different heights on the rotor disc.

4.  An analytical representation for two-dimensional airfoil section character-
istics over a wide range of angles of attack was developed. Extrapolation
curves were constructed for regions beyond the angle of attack range for
which experimental data is normally available.

5. The effects of turbulence and cross-flow were considered for the model but '
not included. An analysis was made which showed that turbulence effects are
negligible for small WECS and that off-axis effects can be handled by a simple
power-of-cosine-of-angle relationship. '

6. The model was set up so that different airfoil data could be used at each radial
station.

Analysis of Specified Rotors

A conventional rotor analysis was conducted of two rotor systems, the Enertech 1500 and
a one-third scale model of the UTRC 8 kW turbine. Using airfoil and planform data
supplied by Rockwell, performance curves of power coefficient, P, versus tip speed
ratio, X, were generated for a series of feather angles for three cases? (1) classical brake
state model, (2) advanced brake state model, and (3) advanced brake state model with
wind shear. The maximum calculated PC'S were 0.40 for the Enertech 1500 and 0.34 for
the UTRC 8 kW turbine. -

Comparison of Theory and Experiment

Because the test data provided by Rockwell were obtained in no-shear conditions and at
tip speed ratios for which the rotors were not operating in brake state, these features of
the code could not be checked. Thus, the calculation was made for the theoretically
preferred advanced brake state model calculations with no wind shear.

For the Enertech 1500 rotor, the data compared well with theory, with the worst error
being on the order of 0.04 in power coefficient at a tip speed ratio of 5. The maximum
predicted power coefficient was 0.397, compared to 0.37 for the data. For tip speed
ratios less than 4, the comparison was excellent. The discrepancies at higher tip speeds
may have been due to errors in the airfoil data used. The prediction was made assuming
NACA 4412 and 4415 airfoil data. In actuality, the Enertech rotor does not use this
airfoil, but one similar to it.

For the one-third scale UTRC turbine, the data did not compare well with theory. The
discrepancy between the two curves was greatest at a tip speed ratio of &, where theory
gave a power coefficient of 0.32, but the data gave only 0.21. This large difference could
be accounted for by assuming a large, unidentified source of drag for the turbine blades.
If a C increment of 0.020 is assumed along the entire blade span at all angles of attack,
then the calculated performance is in good agreement with the data. An increase in
section drag coefficient of 0.020 is quite large, as it more than doubles the drag. This
increase cannot be explained as a low Reynolds number effect because the airfoil data
originally used was low Reynolds number data. Premature stall is not a possibility as the

iii



performance loss occurs at high tip speed ratios where the airfoil will not be stalled. The
_most likely drag source is due to the improper construction of the airfoil section or, as
suggested by Rockwell personnel, there may have been aeroelastic deformation of the
model under test. It is believed that the one-third scale UTRC model gave such poor
performance, with a maximum power coefficient of 0.21, that there had to be some
source of high rotor drag not identified in the test program.

Modifications to the Theoretical Model

With the proper selection of airfoil characteristics, it was shown that the theory and data
agreed well. However, the airfoil characteristics used in the model for the stalled region
are somewhat arbitrary, and a better description of the stalled airfoil characteristics was
developed to enable better performance prediction at low tip speed ratios (corresponding
to high wind speeds in constant RPM systems, an area where airfoil stall is used to control
power output) and starting torque. An empirical modification was made to the stalled flat
plate model characteristics in the shallow stall range of angles of attack, 12° to 26°. The
resulting modified stalled flat plate model showed much better agreement with the
experimental data for the Enertech and UTRC rotors and has been included in the final
version of the model.

" Conclusions

1.  The PROP code in final form with proper airfoil characteristics can be used to
calculate rotor performance over a broad range of blade geometries and tip
speed ratios.

2. While the model has not been correlated with experiment for wind shear and
‘brake state, primarily because of lack of data, the model has been shown to
give excellent agreement with data for the nominal design case of no-shear
and no-brake state.

3. The model is ready to be used as a design tool but requires that the user have a
good working knowledge of airfoil characteristics so that at the design
Reynolds number the appropriate airfoil data is used.

Recommendations

To further improve the accuracy and usefulness of this computer program, the following
investigations are recommended:

L. Comparison with rotors operating in wind shear. Experimental rotors should
be run in wind shears large enough to cause major changes in performance.
Wake surveys should be conducted to ascertain how the blade performance
varies about the circumference of the turbine.

2.  Brake state model. Experiments are recommended to ascertain the accuracy
of the brake state model currently used.

3. Off-axis flow. It is recommended that an experiment be conducted to
determine how rotor performance varies in off-axis flow.

iv
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Airfoil characteristics. More information is needed on airfoil characteristics

in the shallow stall regime. Further, it should be determined if these
characteristics change in the rotating environment of a turbine blade due to
centrifugal or other effects.
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1.0 INTRODUCTION

The analysis of horizontal axis propellers and wind turbines has been important for more
than a century and numerous theoriesl and correction factors have been pro;}osed over the
years. Wilson and Lissaman (1974)" and, more recently, de Vries (1979)° give a good
discussion of general momentum theory applied to an actuator disc with power extraction
and of vortex/strip (blade element) theory applied to windmill analysis. The blade
element theory, in which the aerodynamic forces on each element are equated to the
change in momentum in the annulus swept by the element to determine the aerodynamic
interference (swirl and axial retardation), is used as the basis for the Wilson-Lissaman
windmill analysis computer program which is widely used in the industry today. This
method is rapid and effective but fails in the overload or windmill brake state. There is
also uncertainty about two-dimensional airfoil characteristics and about the tip loss
corrections. In spite of the above deficiencies, this model has many desirable features,
and with some judicious tuning, it is probably as good as can be justified for design and
performance estimation of practical wind turbines. ) Forkd e
/

The basic computer program used is an updated veySion of the PROP code developed by
NASA Lewis Research Center (Wilson et al., 1976)”. This program computes horizontal
axis windmill performance using Glauert momentum strip theory. The program uses, as
input, the twist, chord, and the lift-drag characteristics of the airfoils at several stations
along the blade. The specification of the airfoil characteristics at each station allows the
inclusion of Reynolds number effects along the blade length. As the blade rotates, each
element sweeps out an annular strip. The Glauert strip theory determines the windmill
performance by equating the blade forces, both axial and circumferential, determined by
two-dimensional airfoil theory, with the change in momentum of the air going through the
annular strip. Once the change in the momentum is known, the axial and circumferential
interference factors are computed. This allows computation of the flow velocity and
angle of attack at the blade element, closing the problem. Typically, the equations
describing the above process are solved in an iterative manner.

Several program modifications to this analysis may be used to increase the accuracy of
the method. One improvement is the use of optional tip loss corrections already in the
computer code. Near the ends of the blades, both at the hub and at the tip, a vortex is

'shed. The local induced flow caused by this vortex is greater than the value given by the

basic Glauert theory, which assumes a tubular sheet of vorticity. This increase in induced
flows can be modeled by the Prandtl tip loss equations, and will depend on given rotor
geometry.

Another program modification is the inclusion of wind shear. Wind shear can be treated
by analyzing the blade performance at several circumferential positions, using the local
wind speed for each element at each position. Thus, the average blade performance can
be calculated.

For computations in the windmill brake state, standard momentum theory lacks a relation
between the axial interference factor and the axial thrust coefficient, which is identical

1o the head loss coefficient, that is valid for thrust coefficients greater than 1.0.

Experimental data has shown that windmills can operate at thrust coefficients of up to
2.0. Glauert used this data to develop an empirical relation for large thrust coefficients.

wﬁ@f VAS L s



Using this relation, it is possible to estimate the performance in the brake state using no
more computer time than normal for windmill analysis. AeroVironment Inc. has
successfully used this empirical relation to predict the maximum possible performance of
augmented windmills where very high thrust coefficients occur. S

In this report, modifications to the computer code are discussed and a number of

aerodynamic effects on rotor performance are discussed. Chapter 3 discusses the

analytica! model and the development of the equations used. The equations have been .

developed and are given in a form amenable to the computer code. The following subjects
have been treated in the analysis:

1. Development of the basic blade element theory equations for thrust, torque,
and power for a given annulus.

2. Inclusion of the Prandtl tip loss correction factors for the blade tip and root.

3. Modifications of the basic equations to account for operation in the windmill
brake state. Two models have been developed: (1) an advanced model that

uses an approximation to Glauert's empirical relationship between head loss™
coefficient and axial induction to analyze rotor performance above a head loss

coefficient of 1.0, and (2) a classical momentum brake state model which-does
not permit the head loss coefficient to exceed 1.0.

4, Wind shear effects. These have been treated in terms of the variation of axial
wind speed observed at different heights on the rotor disc.

3. The equations used in the model have been summarized.

6. A representation for two-dimensional airfoil section characteristics. Extrapo-
lation curves are given for regions beyond the normal angle of attack range.

7.  Centrifugal effects. These are mentioned, but are not understood well enough

or supported by data to be included in analytical form in the model.

3. The effects of turbulence and cross-flow. An analysié has been made whic’h
shows that these effects should be quite small for small WECS.

In Chapter 4, the input and output parameters for the computer program are given.

In Chapter 5, the analysis conducted on the two turbine designs, turbines A and B, are
described.

Chapter 6 compares performance data with the original prediction. Results, conclusions,
and recommendations are presented in Chapter 7. Chapter & cites the references.

Curves of power coefficient versus tip speed ratio are given in Appendix A for the various
cases analyzed as are support data on blade lift distribution and performance. The results
of the analysis are also discussed.

Appendix A gives rotor performance calculations, and Appendix B is a user's manual for

the PROP code.

O
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2.0 NOMENCLATURE

The following symbols, definitions, and conventions have been used throughout this report.

Axial interference factor at the plane of the rotor, plus a is a reduction in

flow speed so that, V=V (1 -3)

Circumierential interference factor at the plane of the rotor, plus a' is an
increase in circumferential velocity due to swirl so that, V c= RQa'

Cross-flow interference facter—at-the"plane Gf\the rotor, plus a _ is a reduction
in cross-flow velocity so t 't,//-'VOV c(l -a C) ) ?
C Uy?)fw/j{ Pt o b
Number of blades i
Blade chord at any radial station

, 2 / : ‘
Two-dimensional airfoil drag coefficient, D Vo ‘

1/2PW2C %

head loss across rotor

Head loss coefficient, , this is equal to the normalized

99 Sdisc, proj

axial momentum change through the rotor i.e., CH = 4a(l - a) for this analysis

L

Two-dimensional airfoil lift coefficient, — 5
1/2PW°C

Mass flow coefficient, M
S,V
d'0
Coefficient of force normal to airfoil chord line

P
n3 (ZRT cos W)j

Coefficient of power,

Coefficient of torque, > Q N
n® (2R cos V)




Coefficient of force tangential to airfoil chord line

T .
n? (2R cos 11))4 "

coefficient of thrust,

Blade element drag, parallel to blade element incident velocity, W, or rotor
diameter

Velocity shear profile exponent

Combined tip loss correction, F = FHFT

Cross-flow force on a blade element

Hub loss correction

Tip loss correction

Prandt! tip loss correction exponent

Rotor hub height

Local height of a blade element at some circumferential position

Turbulence intensity

\Y
Advance ratio, 2

n R‘I' cos y
Ground surface drag coeifficient used in computing turbulence spectral density
Blade element lift, normal to blade element incident velocity, W

Normal component of L (normal to projected rotor disc)



Lc
N

n

Cross-flow component of L (in direction of cross flow velocity, V C)

Frequency of turbulence, Hz, or rate of rotation, Hz,

Pressure

Power

Power coefficient, P
90 Vo 3¢

Free stream dynamic pressure, 1/2 pVo2

Torque

Torque coefficient
" Ao SqRT

Radius along blade to any blade element
Reynolds number

Radius along blade to hub end of blade
Radius along biade to tip of blade
Algebraic group defined in text
Spectral density of turbulence

—

Projected area of any annulus , = '

Projected area of the entire rotor disc, W’R.zl. coszw

Thrust in downstream direction



Subscripts

()

()

()

blade element

momentum

g

Thrust coefficient,

99 >4

Cross-flow velocity component normalized to VO’ ie,V /v

cross-flow’ "0

Local freestream velocity for an annulus segment with blade element at height
H
L!

Normal (axial) velocity component normalized to Vg, Le., V| . al/VO
Freestream velocity

Local incident velocity on a blade element, computed in plane normal to the
leading edge of the element so that two-dimensional airfoil characteristics
can be normalized to this velocity

Tip speed ratio, RQ cosWVo

X/Vn

Wave number

Range of wave numbers of interest

Local tip speed ratio based on V , R cos‘J//VL

Quantity applies to calculations performed on a blade element

Quantity applies to calculation of momentum change in a blade
element annulus

Local coefficient referenced to annulus projected area



( )L Local coefficient referenced to the blade element conditions at
height H,

()

Quantity applies to calculations made in the wake, far downstream

wake of the rotor

Greek symbols

a Local angle of attack of any blade element

) Circumferential angle measured from vertical

Y Cross-flow angle

AC) Incremental value, small but finite quantity

P Density of air

o} Rotor solidity ratio

% Relative wind velocity angle for a blade element, measured from the plane of

the rotor to the velocity vector, W. Note that this angle is actually measured
from a reference plane tangent to the cone of rotation for a coned rotor

v Coning angle
f Rotational speed
B Angle measured from reference plane of rotation to the chord line of a blade

element when the feather angle A8 = 0. The distribution of B along the blade
defines the twist of the rotor blade

AB Feather angle caused by a rigid blade pitch rotation of all blade elements.
B + AB is the angle between the reference rotational plane and the chord of a
blade element at this feather angle



Notes on Nomenclature

The PROP program is designed to handle both wind turbines and pg’opeller rotors.
Unfortunately, the standard definition of C_ for propellers is not the same/ e one used
for wind turbines. For propellers, C_ is folind by normalizing power by Pn”D”, where Pis
the density, n is the rate of rotation fn c%cles per second, and D is the diameter. For wind
turbines, the normalizing factor is 1/ ZPY(T;;:RT'

In propeller nomenclature, both definitions are used. However, the wind turbine definition
is given the variable name, P_. It was decided to adopt this form for the nomenclature.
It was found that the propellet definition, C_, had utility in wind turbine work. This is
because most modern turbines operate at cortant rpm. Hence, the normalizing factor is
a constant and Cp is proportional to power.

Another useful variable normally used for propellers is the advance ratio, J, defined as
J=V,/nD. 7 is thus proportional to V, in a constant rpm system. Thus, a curve of C
versus J is simply a normalized form of the power versus wind speed curve of the turbine’
The current form of PROP outputs both C_ and P as well as X and J. Provisions have
been made to analyze the rotor at equal incPements‘in either X or J , as the user wishes.

7
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3.0 DESCRIPTION OF ANALYTICAL MODEL

3.1 Basic Blade Element Theory

A horizontal axis wind turbine may be analyzed by the same methods used to analyze
propellers. One effective and accurate method is called blade element or strip theory.
The rotor blade is divided up into a number of spanwise elements or strips at radial
stations along the blade. Each of these elements sweeps an annulus as the blade rotates.
The axial and tangential velocity interference terms, a and a', are determined by equating
the forces on each blade element with the change in momentum of the fluid flowing
through the annulus swept by that element. It is one of the assumptions of strip theory
that the various annuli cannot interfere with each other. Another is that the forces on
each blade element are due entirely to the lift and drag forces on the element and these
forces are the only ones that influence the flow through the annulus. It is also assumed
that the annulus flow is steady and axisymmetric, so that the existence of discrete rotor
blades is not specifically taken into account, except for the tip effect.

Figure 1 shows the turbine with the blades coned at an angle of V. The length of each
blade is R... Because the blade is coned, the radizus ofzthe projected swept rotor disc is
R.. cos ¥, giving a projected swept area of TR..“ cos V. It is this area to which the
turbine thrust, torque, and power coefficients are normalized. A blade element has a
radius R and a width AR. The area of the element is thus CAR where C is the chord of
the blade at the element. The projected area is CAR ,QQS..!Z._Z‘EU projected width of the
swept annulus is AR cos ¥, giving a swept area of ZTRAR cos“¥,’ The solidity, o, of the

strip is equal to the ratio of the area of the blades to—the- area. For an annulus this
is L - . F ™
GBI I S _BC A\ e
i . TR cos Y P NV GRS

e 2

where B is the number of blades.

J -

The tip speed ratio of the turbine, X, is deﬁnéd as the ratio of the speed of the turbine
blade tip to the free wind speed, V., thus: L

0’ P .
Q ) £ oo Fon D r
R cos v sl e
X = —'v—" Thoe, e T e e' Pl
O / s Sy I

~ where § is the blade rotation rate. Figure 2 shows the flow velocities and forces as seen
by a blade element at radius R. The relative flow velocity, W, is

W =/V02(1 - a)2 coszw + (1 + a')ZQ2 R2 cos2 Y

which can be reduced to ) X



annulus
boundaries

FIGURE 1. Rotor geometry.
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v.(l-a) ccé‘i’;) cone of rotation
O e

Plane tangent to

RQ(1 + a') cos¥

a) Velocities

b) Forces /\/b\&b
J

FIGURE 2. Velocities and forces on a blade element.
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' 2
W o= VO/(I-a)z cos?¥ + (1 +a)? Xz(ﬁR—>
T

or can be put in terms of the incoming flow angle, ¢, as

(1 - a) cos¥

W=V sin @

where the angle of the incoming flow to the plane of rotation, ¢, is

V.(l -a) R
- 0 _ T (1-a)cos¥
¢ =atan Ty e R OTX( o+ a)

It is now possible to write the equations for the forces on the blade and the change of
momentum of the fluid flowing through the annulus. There are two sets of equations to be
considered, one for the axial forces and momentum, and one for the tangential forces and
momentum.

o) Blade Element Axial Force Equation

To find the axial interference factor, a, it is necessary to equate the axial forces on the
blade element to the momentum change in the annulus. The force on a blade element of
width, AR, is equal to

axial blade force = %PWZ CAR (C| cos@+ Cpy sin @)

Only part of this force acts in the downstream direction due to the rotor coning. Also,
this force must be multiplied by the number of blades, B. The incremental thrust on the
blades in a particular annulus is thus

AT = —%PWZ BCAR(CL cos @ + Cn sin®) cos ¥

D

This is equal to the change in momentum of the flow through the annulus, or the pressure
drop across the rotor times the annulus area. The pressure drop, AP, is

AP = pvgc

N —

H
giving for AT,

AT = %pvg C,4(2TRAR cosZ )

12
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Equating these two equations, canceling like terms, and making some substitutions,

e

VE@TR) Cyy cos” @ = W2BC(C cos@ - Cpysing) cos¥

. N ﬁ(d :
“;w« [ ( qp B )(C (p)
R 2 (G, cos@ i sin
? 2y c . W’ BC, LTS D 5C .~ ¥
H 2 2TR.. cosb = e
, Vo ] x o - ¢
‘ Sy Yoo 7

S 2 2 7 X ;
_ g U-a) 22;5 i (C; cos ¥ JCpsin®)
N sin ’ A ‘
— e T

The head loss coefficient can be related to a via momentum theory: o

H=l+a(1-a) and a = 3

H

C

At this point, it is convenient to assume that the lift force is the only force that causes
changes in the flow velocity in the annulus. The drag of the blade does indeed cause a
flow velocity change, but the effect is limited to a thin sheet containing the wake of the
blade and does not change the average flow velocity outside that wake. This is because
the drag term does not cause the shedding of an intense helical blade-tip vortex as does
the lift term. It is this helical tip vortex which is able (through the Biot-Savart Law) to
influence the flow field at points remote from itself. Thus, at this level of approximation,

the CD term may be ignored in the calculation of a. We can now solve for a:

2 2
ba(l-a) = & (1 - a)° cos“¥ C, cos¢ ‘ e
2 . 2
sin“®
e
SRS 22
oL - -
St Tt 1-/1-Z (1 - 2)° cos"¥ C, cos?®
Ao T 7" 2 sin2§0 L .
: g PR .(/\ a - .
2

Note that a (1 - a)2 term is still contained in the right side of the equation.
to leave the equation in this form to simplify t i .
In any case, the equation will have to be solved <W=— O C L o8 )é Q,r,("af/ e
left side being the new a of each iteration. =~ — -

It is desirable

| IR S ..4-—\4-e
-

L./» . e {;
) Blade Element Tangential Force Equation st
The circumferential interference factor, a', is a= L _ (-L <0 < NEPRES ce
generated by the blade element, with the chang =YY T i C.
The torque is equal to the component of the bla My
which for a single blade element of width AR is | =Y~ '/ p e, ey s B
< r s ! [ SR -
— Ty T
DT
- T
& \/ i - /
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circumferential blade force = % p W2 CAR (CL sin @ - CD cos®)

multiplied by the moment arm length, R cos ¥, and by the number of blades, B, giving AQ
for a particular annulus as,

i
\\\ N 2@ AQ = zPW”BCAR(C| sin® -Cycos® Rcos¥ = =~~~ =

Again, only the lift of the blade will be considered in the computation of a'. Thxs torque is
equal to the amount of angular momentum added to the air. This can-be determined by
multiplying the total cn‘cumferentlal velocity added to the annulus, times the mass flow
of the annulus.

The total circumferential velocity added is the circumierential velocity downstream of
the rotor, which is twice the circumiferential velocity at the rotor,

[

downstream circumferential velocity = 2R a' cos ¥

With the annulus mass flow given by , 7
i3 € St o
mass flow = va (1 -a) 2TRAR coszll/
the incremental angular momentum is then, e gt
vwc,\f ¢ {’ (‘{\ (’\"};” o AT |
2 . 3 R R T
AQ = 4PV, R AR (1 - a) a'Qcos” ¥ . 9 4

Equating the two relations and simplifying,

wvaRZAR(l ~a)a'Qcos ¥ = %sz BCAR(C, sin®) R cos ¥

Al I
clt Y
87TV.RQ(l - a) a' cos“¥ = w2BC (C, sin®)
0 N L
From Figure 2 we have; s

H

-
(1 -a)Vn. cos¥
sin @ = 0
W

and;

cos @ = (1 +a) _R_QCQE'_L_D_

14



substituting in these relations as well as the relation for o3

a' g CL

l+a -~ 8cos@

The equations for a and a' must be solved in an iterative manner. The procedure used is:

1.

Define the geometry of the turbine by specifying blade chord, twist, cone, tip
speed ratio, and 2-D airfoil section characteristics.

Assume initial values for a and a' (zero is an acceptable initial assumption) for
a given station.

Calculate W, ¢, and the airfoil angle of attack, @.
Using the blade 2-D airfoil section characteristics, find CL'
Using the above momentum balance equations, determine new a and a'.

Compare these new values with the previous iteration values. If the
difference is within a certain preset magnitude, stop iteration and go to the
next blade element; otherwise iterate as described in step 7.

Find a new estimate for a and a', and go back to step 3. There are several
methods for finding the new estimate for a and a'. One is to use those values
determined in step 5. Another is to average the values found in step 5 with
those used at the start of the iteration. In practice, neither of these methods
is unconditionally convergent. It has been found, however, that if the assumed
values for a and a' are incremented by small amounts toward the values found
in step 5, with the increment being decreased whenever the direction of
incrementation is reversed, then the method will converge.

Once a and a' have been found, the annulus values for the torque, thrust, and power
coefficients, AQ~, AT ~, and AP ~, may be found. When normalized to the projected area
of the annulus, thus giving the local values, QC , TC and PCQ , these are:

QCIZ

C=

? ?
= . B C [(1 - a)2 coszllf+ (1+ a')2 x2 (—R—)2:| (C, sin® -C cos?¥)
27Tcosz’~p RT RT L D
B C (1 - a)? cos?Y + (1 + a0 X2 [ ? (C. cos® + Cr sin®)
Ifcos U R -a)” cos +({1l +a R’r L €os? + Cpsin
P = XQ
CQ CQ
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The values for AQ~, AT, and APC are equal to the local values times the ratio of the
area of the annulusto the“entire rotdr. For example,

2RAR | oKLl ook

AQ. = £ T T e
QC QCQ R 2 [ T F‘\: T e

Q T '

. The other equations are similar.

[

{t 3.2 Tip Loss Correction

B The basic analysis presented above does not take into account the aerodynamic losses

7& N caused by vortices shed from the tips of finite blades. A tip loss correction is required by
the fact that there are a finite number of blades of finite tip chord while blade element
L% theory implies an infinite number of vanishingly small blades. Tip loss correction is
\‘j important because tip losses can cause a decrease in torque and, hence, power output
from the blade. Thus, it is necessary to examine the properties of tip loss and how it can
be modeled.

ot

The standard strip theory, as described, assumes that the flow through each annulus is
uniform. In fact, each blade sheds a discrete vortex near the tip. The effect of this
helical vortex is to produce an induced flow field which is not uniform, but varies around
the annulus, with a period related to the number of blades. This causes an increase in
. both the axial and circumferential interference factors in the vicinity of the blade tip.
. This causes a decrease in section angle of attack, as well as a decrease in the
x?;i;cumferential component of the lift force, resulting in decreased torque. The effect is
atest for blade elements near the tip, and decreases for inner elements. The effect is
‘ also\snaiier%i\tmw\iélf& formed by the vortices is tighter, which occurs when the tip speed
ratio is increased. This would also be the case if the number of blades are increased,
causing the flow more nearly to approach blade annulus theory.

# vt‘ /_1/ /’,—

v

A good approximation to the tip loss is given by the Prandtl model (Durand, 1934)4. This

N model is a close approximation to the actual loss factor. The formulas used are simple
\. and have been used with good success. The Prandtl tip loss factor, FT’ is

G
- 4 ‘\007
Fr = %T— arc cos (e-f)

b

where , \
\ R+ -R L o =

f = g— __I___ /(// /2, ,m'___,,_wﬂ-/

2 RT sin (PT_/ N 7

In the expression for i, the factor, RT sin¢T,9gan be approximated by R sin @, which is
more easily computed. ‘

If the blade ends before reaching the hub, then there will be a hub loss factor, FH, similar
to the tip loss factor. The equation for FH will be the same as for FT’ but £ is now;

jfja y@s‘“.

I (AR ¢
,//' i

< -
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where R, is the radius of the hub. The total loss factor, F, is simply the product of FT
and FH’ or

F= FTFH
The loss factor can now be applied to the equations for a and a'. The flow velocity
components through the annulus averaged around the annulus are less by the factor F. An
examination of the equation for F reveals that F has a value approaching 1.0 far from the
tip, decreasing to zero at the tip. Because the average flow velocity (again, averaged
around the annulus) determines the rate of momentum transfer to the air, the annulus
equation for a becomes:

2 2 .

4aF (1-a}7€/= g (1-3)7 cos”¥ C, cos® e

2 2 L
Sin 90

or >
1_\/1_—9- (1-a)” cos” ¥ C, cos? ;- ;"Q_,LE

.. 2 Fsin’e L (-
- 2E¢__
B llev
and for a'": € s B
: Fa' B g CL I C~— Tar 7 .
l+a" ~ 8cos?® !

These equations are solved using the same iterative procedure outlined above.

3.3 Brake State Model

o Advanced Brake State Model

The simple blade element model developed exhibits singular behavior when a exceeds 0.5.
At this level of interference in an ideal inviscid flow, the flow far downstream in the
wake would develop a negative value. This means the flow would have reversed and would
be approaching the turbine from downstream in the wake. Momentum theory for an
actuator disc gives a value for C , that is less than 1 at this point. In fact, simple inviscid
momentum theory can never give a value for C,; exceeding unity, as is implied by a
reversed flow state. Experimental data does however, give values of C ; that exceed |
when a is greater than 0.5. This state, known as the brake state, mvglves significant
viscous interaction and cannot yet be treated rigorously. This is because momentum
theory does not take into account the turbulent mixing that occurs in the wake. This
mixing is not important at values of a less than 0.5, as the wake flow field is not radically
modified by this mixing. -

In both the viscid and inviscid cases, the wake flow simply proceeds downstream.

However, when a is greater than 0.5, then turbulent mixing is important as the
entrainment of the outer flow can prevent the wake flow reversal from occuring, thus

17



substantially altering the flow field. This radical modification to the flow field must be
accounted for if operation in the brake state is to be properly modeled.

L
Figure 3 shows the relation between a and C,, according to momentum theory, and various
real experimental data points and curves derived by Glauert. For the purposes of this Y
model, it was decided to approximate the relation between a and CH with a quadratic:
'Cy = 0.889 - 0.444a + 1.556a°
This quadratic closely approximates Glauert's empirical formula. This relation gives the
same value as momentum theory when a is 0.4, as well as the same slope of the curve. At
a equal to one, the relation yields a Cy; of two. Solving for a:
a = 0.143 + [0.0203 - 0.6427(0.889 - Cy)
When tip loss effects are included, it is necessary to substitute aF for a, thus giving
e L
i ”IMWL—F - Cy = 0.889 - 0.444aF + 1-5553,,2,;53_mw,m
by e \ bt e Sk, (bym e
and ’ : [ R - LNWWMWMWN——
b= 6. ¢(F-b,) "
o \ 0.143 +J0.0203 - 0.6427(0.889 - CH)
Ly~ ? croe L\ a= BT Y
: S, G e, . - L

This relation is used to solve for a whenever C,, is greater than 0.96. Below C., = 0.96,
standard momentum theory as represented by }t_llme equations given previously will suffice.
As before, these equations must be solved iteratively because CH and a are not
independent variables.

o} Classical Momentum Brake State Mode!

Another prediction of brake state performance can be found by solving:

& 2y
4aF(l - aE/) = —zg— &5‘2——— C, cos® (1-a)%@
sin“ @

This is the annulus axial momentum balance with the term (1 - a)2 added on the
right-hand side. This can be solved iteratively by rearranging the equation as follows:

2
g cos‘¥ ©
7o Cp cos®

sin

A\

™

giving,
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FIGURE 3. Relation between aand C,, in the brake state. Ky
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2
ZSW + F -\/E - st F(1-F)

25, + )

Use of this relation for a in the iteration procedure will result in values for a and C that
agree with classical momentum theory at all values of a, as shown in Figure 3. It Ig‘hould
be noted that when a is less than 0.4, both relations will give the same value for a at the

end of the iteration procedure. Both of these equations are included in the computer
model.

3.4 Wind Shear Effects

Wind turbines are subject to a wind shear from the atmospheric boundary layer. This can
cause changes in the performance of the blade element as it proceeds around its path, as
well as changes in the average performance. However, because the magnitude of the wind
shear is normally small (say, 17% wind speed change across the rotor for a rotor diameter
equal to hub height for a wind profile exponent of 0.167), one would expect the total
performance to change by a very small amount. The case for a small performance change
can also be made as follows:

Consider a graph of the power output of a blade element as a function of wind speed with
the blade element rotating at a constant rate. Over any small range of wind speeds, the
power output can be approximated by a linear function of wind speed. If we approximate
both the wind shear, as seen by the blade element, and the power versus wind speed curve
as linear functions, then it immediately follows that the wind speed and power output of
the element will vary as a sine wave with time. For many wind turbines, the experimental
power curve is much closer to a linear function than a cubic function. The average speed
seen by the element will be equal to the hub height value, and the average power output
will be equal to what would be output if the blade element was subjected to the hub height
wind speed. Thus, with the above assumptions, wind shear causes no performance change.

In actuality, neither the wind shear nor the power curve are linear functions. Thus, some
performance change may be expected. It is necessary to use blade element theory to
determine what these changes are for any particular turbine.

The analysis will be done as before, by equating the blade forces to the momentum
changes in the annulus. This time, however, the analysis will be carried out over several
different circumferential stations about the annulus with the circumferential angle, 6,
measured from vertical.

The width of the annular station will be A9, where

2T
A9 N
S

where Ns is the number of circumferential stations. The thrust on an annulus is

PW2 _408 CAR (CL cos @) cosy/

1
AT = 35 27
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Note that A6B/27 is the number of blades appearing in that particular circumferential
section.

The change in flow momentum expressed in terms of the head loss coefficient is

| 15,2 ) 2
AT = fpvo (2TRAR) C; 5= cos 1

Note that these two equations are exactly the same as before, except for a 48/c7 term
in both components, which can be cancelled when the components are equated. Thus, the
fmal form of the equation for a will be the same as before, as will be the equations for a/,

C , Q ,and P~ . All these equations will be normahzed to the local velocity, i.e., the
flow speed as seefl by the statlon, \'%

Le
The formula for wind speed as a function of height is 13,07 78
H E /CD/‘F
v, = v. [—X = e
L = "0 \ Hj Ve

where V. is the wind speed at height H V is the speed at height H, , and E is the wind
profile exponent. H, will be chosen as che fotor hub height, and will f)’ normalized to the
rotor radius. The position of any station will be specified by its radius and its angle 6,
from vertical. The height of this point is:

H, = HO + Rcos® |,
\‘/ _ /": ’

and the speed is T
o E
cos 6)

\

' R

VL = VO (l + —I_-I"—

0
The computer program calculates the thrust, torque, and power coefficients of each
annular “and _circumferential section, normahzes ‘these values to the hub velocity, and does
a summation to obtain the averaged values for the erm_‘gl_rg gotor. It is only necessary to
find the performance over half the circle; the other half will be the same. The station
" taken for each section is circumierentially midway between the sides of the section, as
shown in Figure 4. In practice, it has been found that three to four sections per half
annulus give results of sufficient accuracy; that is, there is no variation in the average

values if more sections are taken.

3.5 Summary of Equations Used in Computer Model

For convenience, all the equations used in the computer model are summarized below:

BC

Solidity: o = TR sy
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Wind Shear Profile

FIGURE 4. Analysis points for wind shear model.



Rp§cos v
Tip speed ratio: Xz —g—

e,
LN

Vo
R E
. _ R y
Local flow velocity: VL = VO ( 1+ HO cos 9) Swo,
Vo .
Local tip speed ratio: X, =X VI__- o X =
Flow velocity as seen 5 2 5 2/(R
by blade element: W=V, [(1-a%cos“Y + (1 +a) X -
L L RT
| _ (1 - a) cos ¥
or W o= VL sin ¢

Ry (1 - a) cos ¥

Incoming flow angle: ¥ = atan
R X, (1 +a")
. ' 2 -f
Tip loss factor: F = — arccos(e’)
R~ -R
where f at tip is f= %—— R'l;inQO
R -R
and £ at hub is ts S s
‘ H
o} Equations for a:
Classical momentum theory with brake state: ~
. - ; o ’ /ﬂ,\* - y.2 ) ST
, /
‘ Sw = %— cos" ¥ CL cos @
/5 sin®@

B 2
25+ F—\/F -4, F(l-F)

2 (SW + Fz)
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o (1- a)2 c:os2 Y

advanced brake state theory: CH = > ~ CL cos ¢
sin® ¢
1-J1-¢°
Cyy less than 0.96: a = S5E
: 0.143 + J0.0ZOB - 0.6427 (0.889 - CH)

CH greater than 0.96: . a = E
o] Equation for a's

a' 9 CL

T-a - SFcos®

The local torque, thrust, and power coefficients, normalized to the hub height wind speed,
are:

"(»"/ C ',‘,‘/,
2! v 2 R
B C L 2 .
Q~ = = ( ) we (C, sin¥?-.Cq cos¥)
Cjz ZWCOS?E’,B RT VO L D
”’”f’::i:’ V. 2 .
(B L) w2 o)
chz (277(:05 7 RJ Vo W (CL cos P + CD sin ¥)
\
P. = XQ~ . - N ;
CE C -

The incremental contributions to the total torque, thrust, and power coefficients from the
local values computed at a number of circumferential stations are:

<t ’ < "
. \ . e - - j
SR 2RARAS — (. ERT e
/ ! oo Qe =Q¢, — - 2 T -
e 1 ; ? IH RT
L. R L
R AT = T, -2RARS
C Cﬂ R 2
T
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3.6 Representation of Airfoil Characteristics . é/(lﬁww"/‘!’”

Part of the procedure to analyze the turbine is determining the lift and drag coefficients

of the blade element, given the local angle of attack at the blade element. The | fL
aerodynamic characteristics of the airfoil section including stall effects must be available Voo
ANy

g C E . K

[fAV'S .\:,\I \.}\‘( N

: N
v W v\'\
I

to the computer. Lo (& o eu AT 2eied AN - &
coujp PE 2, Pos e me(—wﬁﬁb& LT ¢lom 3
i

It was decided to express the airfoil data as a set of points giving C; and C versus angle {y
of attack. These points are chosen to be at angles of attack at whiléh signiPlcant changes o7 Y \J
in airfoil characteristics occur. {Values between these points are=—found by linear *j/ A

interpolation. Values out of the range of tThe points input to the Computer are found by xo";\/) W
assuming the lift and drag coefficients degenerate to flat plate values at plus or minus 90\ﬁ< i

degrees. That is, at 90 degrees, C equals zero, and Cpy equals 1.2, as shown in Figure 5.

The program is set up to have different airfoil characteristics at different radial o
positions, thus allowing the user to take into account changes in blade shape and local b N
.\ 4

@ )

Reynolds number. @
AV
P -“ \}

3.7 Centrifugal Effects & N
S v S
\/,\1 W o

The primary centrifugal effect is the change in blade boundary layer due to centrifugal

forces near the surface of the blade. W.J. Wentz, Jr., has made some attempt to include ¢ ", -

threezdimensional stalling effects in the airfoil characteristics (Wentz and Calhoun, ., o

1981)5. These studies showed that it is possible that centrifugal effects could double or 'V -

triple the maximum lift coefficient of the airfoil, with the greatest effect occurring near . -
the hub. When these effects were included in the airfoil characteristics data, the power *,
coefficient was greatly improved at low tip speed ratios. However, the results are "V
currently inconclusive as no data exists to verify these effects. U

3,8 Turbulence Effects

Wind turbines are subjected to turbulence covering a wide range of scales. Figure 6 gives
the spectrum for horizoptal turbulence as a function of the turbulence size at a height of
10 meters (Sachs, 1974)°. Note that most of the turbulence occurs at wavelengths around
300 meters. An equation that fits this curve is (Davenport, 1961)

S(n)

dn = 4.0K ———’5—-7— dx
vo2 (1 + xO)*3

where n is the frequency in cycles per second, S(n) is the spectral density, K is the surface
drag coefficient (normalized to the flow velocity at 10 meters), and x, the wave number,
is given by

X = 1200n/\’O (VO in m/s) /
The factor K is typically 0.005 for open, flat terrain. The turbulence intensity, i, in any

given size range can be found by integrating this equation over the desired range and
taking the square root. Thus,
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FIGURE 5. Representation of airfoil lift and drag coefficient curves.
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X

2 2
1=/ S(n)dn/V,

X1

which integrates to:

K1/2 1 1

I = 245 173
)

21/3
(1 +x (l+x2)

1

Table I gives the turbulence intensity, in percent of VO’ for various turbulence scales in a
10-meter-per-second wind.

Very small scale horizontal turbulence -- that is, turbulence on the same scale as the
blade boundary layer depth -- can effect blade element lift and drag characteristics by
prematurely tripping the laminar boundary layer. For wind turbines, the level of this
turbulence is very low, on the order of 0.57% of the free stream wind. The blades of a
modern wind turbine are typically moving 4 to 10 times the speed of the free stream wind,
thus making the turbulence level as seen by the blades only 0.14% to 0.057% of the wind
speed seen by the blades, This level of turbulence is so low that the section
characteristics will be unchanged.

The next scale of horizontal turbulence is in the size range of the rotor radius.
Turbulence of this scale can affect part of the rotor blade as the blade cuts through an
individual eddy. This can cause angle of attack changes on parts of the blade, thus
changing the section lift and drag characteristics. If the angle of attack exceeds the
separation angle for the airfoil, it is possible that the section lift coefficient will actually
increase above the expected maximum value, maintain that level for a short length of
time, and then suddenly stall. This is known as dynamic stall.

The intensity of this scale of turbulence is about 2%. As the blade is typically moving 4
to 10 times faster than the free stream flow, this corresponds to a turbulence of 0.7% to
0.2%, or an angle of attack change of 0.4 to 0.1 degrees. This change is sufficiently small
so as to be ignored. Ty 2 P —p
; g?‘% ¢{'L‘ e OLQ(C Ve Ao/ >

The greatest turbulence intensity lies in large scale horizontal turbulence -- that is,
turbulence of sufficient size so that the entire turbine is embedded in a constant velocity
field over the entire disc. Changes in wind speed can be accounted for by computing the
power output of the turbine at all wind speeds, and then doing a time average. This is the

realm of capacity factor analysis, not rotor analysis.

Turbulence also causes changes in flow direction. Changes in the horizontal plane are
cancelled by the turbine yaw system, provided it is sufficiently responsive. Changes in
the vertical plane are not cancelled at all. Vertical turbulence intensity varies with
height above the ground but is, in general, less than the horizontal turbulence intensity.
Assuming a large value of 13% for vertical turbulence intensity, the corresponding change
in flow direction would be 7.5 degrees, which is significant. Thus, it would appear that
the only types of turbulence that need be dealt with are the horizontal and vertical
components of the large scale turbulence which produce off-axis effects.
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TABLE 1. Turbulence intensity in a 10 meter per second wind
meters altitude.

i

at 10

SWECS
Turbulence Turbulence Turbine Rotor

Scale Intensity Scale
100 mm and less 0.57% blade boundary layer
0.1-1.0m 1.4 %
1.0-10.0m 3.1% blade radius
10-100m 6.7 %
0.1 - 1.0 km 12.8 % entire turbine
1.0 - 10.0 km 4.7 %
10 km and greater 1.2%
all sizes 17.3 %
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o Off-Axis Flow Effects \

The effects of off-axis flow will be examined first by finding the performance of a
perfect actuator disc in such flow, and then extending blade element theory to encompass
this realm. For a perfect actuator disc placed at an angle to the free stream flow, the
flow speed normal to the disc is V_, and the cross-flow velocity is V_. As shown in
Figure 7, V_ is positive when vertical with 0 in the direction of rotation. Both V c and V|
are normalized by the free stream flow, thus:

2

c =1.

\' 2 + V
n
The effect of the disc on the flow is to cause a velocity increment at the disc of

magnitude V a in a direction normal to the actuator disc. Downstream of the disc, the
velocity change will be twice this. The head loss coefficient is

2

2 2
C =1-Vn (1 -2a) -VC

H

The mass flow coefficient, C,,, is the mass flow through the rotor normalized to the mass
flow that would flow through“\%he rotor if Vn is equal to | and a is equal to zero.

CM = Vn(l-a)

The power coefficient PC is

Po =V (1-a)(- vn2 (1 - 2a)? - vcz)

This expression can be optimized for the best a. Sparing the details, the optimum a is:

2 2
A '\/Vn + 3(1-VC)

ov
n

Using the relation Vn2 + ch = |, the expression for a can be greatly simplified to a = 1/3.
Thus, the optimum axial interference factor is not a function of rotor tilt. Using this
value for a in the equation for P, we obtain

_ 16 3
Pc =% VY,

~——

Thus, the power coefficient of an ideal actuator disc is proportional to the normal flow ‘
velocity cubed, or the cosine of the off-axis angle cubed.

e
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FIGURE 7. Geometry of cross flow model.
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It is also necessary to look at blade element theory when off-axis flow is added. To do
this, the blade element force and momentum changes will be resolved into components
parallel and perpendicular to the turbine axis. The downstream thrust normal to the plane
of rotation is

AT = 27RAR pV 2vn2 (1 - a) (2a)

0
for an annulus at radius R, with width AR. V_ is the normalized flow velocity normal to
the plane of rotation. The cross-flow force is

2

AF . = 27TRARpVO

C vV V. (1 -a) (2a)

where V _ is the normalized cross-flow velocity, and a. is the cross-flow interference
factor. The total lift generated by the blade element is - \\

2 2 2 . 2
oL = Lov ZBCar (v 2(1-2)% + @R +si0V_(1-a))?)c)

1
2

Defining the incoming flow angle as seen by the blade as &, the lift force can be resolved
into components:

s ALN = AL cos¢@

p AL~ = AL sin @ sind

Equating the forces in the normal direction we have

— "y

e 202 ] 2/ 2 2
2/ 27RRY,V ?(1-a)(2a) AR = ZPCB ARV (vn (1-2)°% +
@R + sibV_ (l-ac))z)CLCOSQ"
or
1 CB 2 Ve 2
(1 -a)(2a) = > 7R ((l—a) + (Xn +sinev-n—(1—ac)) )CLcosﬁp

where X_ = X/V_.
n n
Using the relation,

\
2 _ 2 . C 2
wWo = (1-a) + (Xn + sird ——Vn (l—ac))
or
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2 . (1- a)z/sinz(p

where

A
@ = atan [(1- /X, + im0 3= (1 -3))]

n
we can simplify the relation to:

{ CB (l-a)ZCLcos(P

(1-a)(2a) = 5 7R

sinz.QD

Equating the cross-forces we have:

2 1 2y 2 2
2mRpV,2V_V_(1-a)(2a) AR = 3PCARB V, (vn 1-a)

+ QR + sind Vc (1- aC))z) CL sir@ sin @

or

v
(1-2)2a_ = 1 _CB

V
> SR V—((l—a) + (X +sid 57— (1-a)) ) sinf sin @

Vi
and substituting in the relation for W,

1 CB Vo S sirf
2 2R V_ sin®

(1 -a) ZaC =

These equations were solved for a and a. for some test examples. They were not
_jmcorporated into the main computer model. It should be noted that in deriving these
relations, circumferential interference and tip loss have been ignored.

The first test case was for a two-bladed turbine with a C/R of 0.075, no twist, no feather,
and with the blade element of interest moving at a tip speed ratio of 7. This is close to
optimum operating conditions.

Figure 8 shows the local torque coefficient, Q~ , as a function of blade position for zero,
10, and 20 degrees off-axis flow. Also given are the average values for Qe for this one
annulus, and a comparison to the cosine cubed law. As can be seen, the Comparison is
good.

Figure 9 shows the results for the same blade element, but at a feather angle of five
‘degrees. This is an off-optimum condition. The comparison with the cosine cubed law is
'still good.
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Kf' he conclusion from this is that the turbine will respond only to the normal component of
\\__the flow, and-ignore any cross-flow. Thus, if a 13% turbulence is assumed, the axial flow

will be reduced to 99.2% of its full value, resulting in a 2.5% power loss.
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The computer program requires the following input parameters, and produces the
following results:

[

4.0 INPUT/OUTPUT PARAMETERS FOR THE COMPUTER MODEL

o) Input

Rotor geometry:

Number of blades.

Cone angle (degrees).

Hub cut out radius (normalized).

Tip and hub loss models (Prandtl, or none).

Brake state model (classical or advanced).

Wind shear exponent, hub height (normalized), and number of circumferential
stations.

Blade element data (blade is divided into ten equal segments):
Note: All quantities are measured at the mid-point of the elements
Chord (normalized), and twist of each of the ten blade elements.
Airfoil section lift coefficient versus angle of attack, and drag coeificient
versus angle of attack for each blade element.
Analysis ranges:
Feather angle range and increment.
Advance ratio range and increment.

Blade elements to include in analysis (this is to allow examination of only part
of the rotor for design optimization purposes).

o} Output
Blade element data:
For each feather angle, advance ratio, circumferential station, and blade
element, the values for a, a', CL’ Cn, ¢, angle of attack (@), and the torque,
thrust, and power coefficients nérmalized to the annulus area, are output.

Complete rotor data:

For each feather angle and advance ratio, the total values for the torque,
thrust, and power coefficients are output.

In the current form of the program, outputing of the blade element data is optional.
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5.0 SPECIFIC TURBINE ANALYSIS AIEJLD RESULTS

For this project, two turbines specified by the spersor were analyzed using three different
options of the model. The options used were the classical brake state model with no wind
shear, advanced brake state model with no wind shear, and advanced brake state with a
0.167 wind shear exponent. The runs with wind shear used four circumierential stations.

speed ratio was varied from 0.5 to 12.0 in stqg%g&()fgﬁ, The airfoil section data used was
obtained directly from data supplied by the sporsor.
derived from the blade geometry and Ehe operating RPM of 170. This resulted in the use
of NACA 4415 data at Re = 83 x 10° for sections 1 through 3, NACA, 4415 data at
Re = 163 x 10” for sections 4 through 6, NACA 13415 data at Re = 334 x 10~ for sections 7

through 9, and NACA 4412 data at Re = 334 x 10 for the outer section, 10 .

For machine B, the rotor was analyzed for feather angles of -2°, 0°, and 2°. The tip y

TE
r}"
!

speed ratio was varied from 1.0 to 15.0 in steps of 0.5. The airfoil sectipn characteristics

by
he blade Reynolds number was ¢

Mo
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For machine A, the rotor was analyzed at feather angleiTof -l;o, 0°, 40, and 8°. The tip \\\\\ 5\
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were taken from the NACA 9012 data provided, using the Re = 170 x 10~ data for sections no L
N \

1 to 6, and the Re = 330 x 10~ data for sections 7 through 10.

Computer output from these analyses is presented in Appendix A. For each run, the input
parameters are listed, the rotor performance given, and a plot of P~ versus X for the
feather angles considered are given. The element data is not outpu¥ as this would add
about 200 pages of output. e 0 VT 0 s

In examining the results of the analysis of the two rotors /{data presented in Appendix A),
a number of interesting”’conclusions can be drawn. Rotor A has a maximum P~ of 0.397 at
design feather a.ngle)éﬂza tip speed ratio of 5.0 to 5.5. "However, at a feather angle of

4°, the maximum power coefficient is 0.442 at a tip speed ratio of 6.0. Examination of

.

the power coefficient curves reveal that performance /beécter at almost all tip speed
ratios at this feather angle. A [ ( Hed
Rotor B has a maximum P of 0.337 at design feather angle and tip speed ratios of 3.0 to
8.5. Off-design feather mglestesult in lower _&er?ormance.

- V\.Q ' et 3T .

©
For both rotors it would appear that adding wind shear makes almost no difference in
-performance. In fact, test cases have shown that even rotors as near to the ground as a
MOD-2 rotor have only a three-percent performance loss due to wind shear. The rotors
under consideration have hub heights so great (normalized to rotor radius) that the wind
speed variation is very small, resulting in the nearly insignificant performance change.

The effects of which brake state model is used are more dramatic. At low tip speed
ratios, there is no difference in the results, as the rotor is not in the brake state. The
changes in predicted results occur at high advance ratios and/or negative feather angles.
The advanced brake state model gives higher power coefficients at these points than the
classical model. The curves given by the classical model tend to have an abrupt
performance drop when the rotor enters the brake state. The advanced model tends to
give smoother curves. Because the advanced model is based on observed data, it is felt
that it will give performance predictions closer to the experimental results.
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6.0 COMPARISON OF THEORY AND EXPERIMENT

Performance data for the two turbines analyzed in Chapter 5 were given to AV by
Rockwell International. The two turbines were tested by Rockwell using a turbine
mounted on a moving flatcar at the U.S. Department of Transportation's test center at
Pueblo, Colorado. The tests were made at a constant RPM with various tip speed ratios
obtained by changing the speed of the train on which the turbine was mounted. System
performance was determined by measuring the electrical power output of the generator.
Corrections were then applied for power train efficiency, density, and off-axis flow to
estimate rotor performance. The correction made for off-axis flow was a cosine to the
first power correction, not the cosine cubed correction advocated by AY. Rockwell
suggested that the cosine correction is better supporte,c} by data, so the Rockwell
o

orrection was used. ,
c el

In this chapter, experlmental data are compared to the theoretical curves, d15crepanc1es
between theory and experiment.-are investigated, an improvement is made in the
treatment of au‘foﬂ characteristics in the stall range, and the data are compared to the
im ed theoretical curves, / ion 6.1 discusses the comparison of the data with the
@;?\;’}performance redictions, ~and Section 6.2 discusses improvements to the

theoretical model, and mpanso/ f the data.with.the 1\nlproved model.

6.1 Comparison of Data With the giginal Prediction
‘//— .
For each turbine, performance predictions were made for three cases: (1) classical brake
state model, (2) advanced brake state model, and (3) advanced brake state model with
wind shear. Case 3 is of little significance, as it is almost indistinguishable from the
no-wind shear case, and the test data was generated in no-shear conditions. On the basis
of the test data, it cannot be determined which of the two brake state models is best, as
the test data was only reported for tip speed ratios below the tip speed ratios for which
brake state was predicted to begin. The advanced model |is still preferred, however, as it
gives smoother performance curves. Thus, the data will be compared to the advanced

brake state model/no-wind shear prediction.
el C«Lawu\,( [<f M)‘Q

Data for the Enertech 1500 rotor (machine A) is compared to theory in Flgure 10.
Comparison is good, with the worst error being on the order of 0.04 in power coefficient
at a tip speed of 5. The maximum predicted power coefficient is 0.397, compared to 0.37
for the data. For tip speeds less than 4, the comparison is excellent. The discrepancies at
higher tip speeds may be due to errors in the airfoil data used. The prediction was made
assuming NACA 4412 and 4415 airfoil data. In actuality, the Enertech rotor does not use
this airfoil, but one similar to it. Actual airfoil data for the Enertech rotor sections
would be needed to make a proper evaluation. It is noted that increasing the blade twist
angle by 4 results, theoretically, in higher performance. In general, the comparison of
theory and data is quite good.

Figure 11 shows the data and theory for the one-third scale UTRC turbine (Machine B).
The curves do not agree well. The discrepancy between the two curves is greatest at a tip
speed of &, where theory gives a power coefficient of 0.32, but data gives only 0.21. This
large difference can be accounted for by assuming a large, unidentified source of drag for
the turbine blades. If a C increment of 0.020 is assumed along the entire blade span at
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FIGURE 10. Enertech turbine comparison, original prediction.
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FIGURE 11. UTRC turbine comparison, original prediction.
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all angles of attack, then the performance is as shown in the lower curve in Figure 11, and
here agreement is good. An increase in section drag coefficient of 0.020 is quite large, as
it more than doubles the drag. This increase cannot be explained as a low Reynolds
number effect because the airfoil data originally used was low Reynolds number data.
Premature stall is not a possibility as the performance loss occurs at high tip speed ratios
where the airfoil will not be stalled. The most likely drag source is due to the improper
construction of the airfoil section or, as suggested by Rockwell personnel, there may have
been aeroelastic deformation of the model under test. Checking the theoretical model
against data for the full-scale UTRC turbine would help clear up the problem.

It is believed that the one-third scale UTRC model gave such poor performance, with a
maximum power coefficient of 0.21, that there had to be some source of high rotor drag
not identified in the test program.

6.2 Modifications to the Theoretical Model

With the proper selection of airfoil characteristics, it has been shown that the theory and
data agree well. However, the airfoil characteristics used by the model for the stalled
region are somewhat arbitrary; the lift coefficient is decreased linearly to zero at an
angle of attack of 907, and the drag coefficient is increased linearly to 1.2 at 90°. A
better description of the stalled .airfoil characteristics was developed to enable better
performance prediction at low tip speed ratios (corresponding to high wind speeds in
constant RPM systems, an area where airfoil stall 1s used to control power output) and

startmg torque. ,
7 W(,‘\_, g (\ .//Ao'w’ i‘v Y,(/}g/,,},t f/,_,.v\‘
0 Approach oo "U/LIJ \J Ls

To illustrate the problem with tl%é ongmal\assumptlons in the stall region, the airfoil
characteristics used in the analysis of the Enertech and UTRC rotors are shown in
Figure 12. The lift and drag components \E:an be resolved into forces .normal and
tangential to the airfoil chord hne, w1th the tangential coefficient (C,) shown. In the
deep stall region, above about 25° to 30°, thé |C_ value should be zero, the airfoil being
subject to normal forces only in a manner s1m11ar 0 a flat plate. The characteristics used
do not give this result. To improve the treatment in the stalled region, a stalled flat plate
model was developed using analytic expressions for C. and C As will be shown, this
model did not result in acceptable predictions for the %wo rotors The reason for this was
found to be that the airfoil characteristics between 12° and 26° degrees, the shallow stall
range, did not agree well with the available data.

To remedy this 51tuatxon, an empirical modification was made to the stalled ﬂat plate
model characteristics in the shallow stall range of angles of attack, 12° to 26°. The
resulting modified stalled flat plate model showed much better agreement with the
experimental data for the Enertech and UTRC rotors and has been included in the final
version of the model.

Both the stalled-flat-plate and modified-stalled-flat-plate models are discussed in the
following subsections.
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o) Stalled-Flat-Plate Model

Forces on a stalled flat plate have been examined by Horner (1965)8. The normal force
coefficient, C_ for a low aspect ratio (less than 5) flat plate is 1.17 for angles of attack
greater than aBout 25°. For two-dimensional flat plates, Cn is

c = 1
n - 0.222 + 0.283/sina

At an angle of attack of 90°, C,, is given for various blade aspect ratios (AR) as

12.22
C, = 1.98 - 0.81 tanh (zz=)

Figure 13 shows the normal force coefficient for flat plates at various angles and aspect

ratios. From this, it can be seen that Cn can be expressed as follows:
UrAted— Lovmi s . 1 12.22
£ oc 90" Cy = min (G—5oe3mma 0 198 -08ltanh (555R) ),

where "min" refers to the minimum function; i.e., the lowest of the two possibilities.
Once Cn is known, CL and CD can be found directly

Ty
£

CL = Cn cos @, and CD = Cn sina
It is still necessary to determine the aspect ratio of an element of turbine blade. The
apparent aspect ratio can be related to the Prandt! tip loss factor, F. One interpretation
of the tip loss factor is that it is the amount of lift lost; that is,

{Vl/i‘: T TP W P Vel /\ €« v fa ok Lo : S
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S A F = L :
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where CL is the actual lift coefficient, and CL is the lift coefficient that would be

obtained if there was no tip loss. A similar re?ationship holds for ﬁn\ite aspect ratio

blades, ) ; L \ T
e P s Q ~ 1 CL {/, . N\
[ _7// — ow - e R
e, T a. ¥ 1+2/AR C ’
P A ] L ‘ ?
Equating these two relationships, ° A
W AC -
1 ) ) /"
F= T79/AR A
and solving for the aspect ratio, T [
N L i
N A 2F S Lo o
RN AR = T_'—F- ’ .

gives an equation for an apparent aspect ratio as a function of F.

The flat plate model is integrated with the airfoil characteristics as follows. Standard
airfoil test data is used until stall occurs. The CL and CD curves are then linearly

TS
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extended from the last data point just after stall to the oﬂat plate stall” values at .
a = 26.5°, where C; = 1.047 and C = 0.522. The angle 26.5" is used because it is the
greatest angle of atxfack for which tPe flat plate Cn is not a function of aspect ratio.

Figure 14 shows the resulting stalled-flat-plate-model airfoil characteristics. These
curves were compared with w'g':d tunnel data for the 0012 airfoil operated at high angles
of attack (Critzos et al., 1955)” and were found to agree well. Figures 15 and 16 show the
performance prediction based on these characteristics for the Enertech and for the UTRC
rotors, respectively. In both cases, the performance is underpredicted in the mid to low
tip speed range. An examination of the polars reveals the reason: Ct has been greatly
reduced in the shallow stall (less than @ = 26.5°) region.

o) Modified-Stalled-Flat-Plate Model

In the shallow stall region, the flow is still partially attached to the upper surface of the>
airfoil. Thus, drag should be less than the flat plate case, and the lift should be greater.
An examination of stalled-flat-plate model airfoil characteristic curves shows that the
lift is indeed greater, but the drag is about the same as the stalled flat plate. Thus, to
properly model the airfoil, the drag should be reduced. An empirical drag curve was
developed which resulted in good predictions for both rotors. This curve was generated by -
increasing the C at a rate of 0.019 per de%ree from the stall angle to 207, and then
letting C increase linearly to 0.522 at 26.5 . From this point onward the flat plate
model is Used. .

Figure 17 shows the modified-stalled-flat-plate airfoil characteristics for the Enertech
and UTRC airfoils. Figure 18 shows the performance prediction for the Enertech rotor,
and Figure 19 shows the prediction for the UTRC rotor. The computer output of the
performance prediction is given in Appendix A. Agreement with the data is good. It
should be noted that this modification to the drag curve is empirical and, as yet, not
supported by theory. However, the drag of an airfoil section normally increases
quadratically in the shallow stall region, not linearly as originally assumed. The shallow
stall model used is an approximation to a quadratic drag increase. More research is
needed to determine the proper_airfoil characteristiGs-in-thisregime. — T
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« ~ It i$ also possible that the céntrlfugal effects discussed in Section 3.7 may be responsible

/for the remaining discrepancy between theory and the data. Again, more research is
needed.

et i

3

Here again, it is noted that this modified-stalled-flat-plate model for airfoil character-
istics has been chosen as the best approach and has been incorporated in the final version
of the computer program. '
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7.0 RESULTS, CONCLUSIONS, AND RECOMMENDATIONS - ﬁﬁm

L
7.1 Results e @N

Examining the results of the analyses of the two rotors (data presented in Appendix A), a
number of interesting conclusions can be drawn. Rotor A has a maximum P~ of 0.397 %t
design feather angle and a tip speed ratio of 5 to 5.5. However, at a feather angle of 47,
the maximum power coefficient.is"0.442 at tip speed ratio of 6. Examination of the power
coefficient curves reveals that pergermance is better at almost all tip speed ratios at this
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Rotor B has/a maximum P of 0.337 at design feather angle and tip speed ratios of 8 to
8.5. Off design feather angles result in lower performance.

For both rotors it would appear that adding wind shear makes almost no difference in the
performance. In fact, test cases have shown that even rotors as near to the ground as a
MOD-2 rotor have only a three percent performance loss due to wind shear. The rotors
under consideration have hub heights so great (normalized to rotor radius) that the wind
speed variation is very small, resulting in the nearly insignificant performance change.

The effects due to choice of brake state model are more dramatic. At low tip speed

ratios, there is no difference in the results as the rotor is not in the brake state. The

changes in predicted performance occur at high advance ratios and/or negative feather

angles. The advanced brake state model gives higher power coefficients at these points

than the classical model. The curves given by the classical model tend to have an abrupt
performance drop when the rotor enters the brake state. The advanced model tends to )
give smoother curves. Because the advanced model is based on observed data, it is felt /KD
that it will give performance predictions closer to the experimental results. Uv

& [~

Comparison with experiment indicates that there is reasonable agreement with theory for DV /@“'

Rotor A, the Enertech 1500, but.poor agreement for Rotor B, the one-third-scale UTRC, % &% [
o\

for which the data was below the predicted curve. An increase in airfoil profile drag
could account for the performance difference on the UTRC. (It is noted that Rockwell
personnel indicated that this rotor had lower performance than expected. )
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The computer model has been improved by changing the treatment of the stalled airfoil
characteristics. A stalled flat plate model is used for the deep stall region (angle of
attack greater than 26.5 ) and an empirical shallow stall model has been used for angles
between initial stall and 26.5°. Below initial stall, published airfoil data is used. This
model has been called the modified-stalled-flat-plate model. These changes do provide a
rational, theoretical basis for the stalled airfoil characteristics.

7.2  Conclusions
L. The PROP code in final form with proper airfoil characteristics can be used to / b/q(k(
calculate rotor performance over a broad range of blade geometries and tip L M
speed ratio. T
-
2. While the model has not been correlated with experiment for wind shear and
brake state, primarily because of lack of data, the model has been shown to

55



give excellent agreement with data for the nominal design case of no-shear
and no-brake state.

We conclude that the model is ready to be used as a design tool but requires
that the user have a good working knowledge of airfoil characteristics for use
on the turbine at the design Reynolds number.

7.3 Recommendations

To further improve the accuracy and usefulness of this computer program, the following
investigations are needed:

1.

Comparison with rotors operating in wind shear. Experimental rotors should
be run in wind shears large enough to cause major changes in performance.
Wake surveys should be conducted to ascertain how the performance varies
about the circumiference of the turbine. :

Brake state model. Experiments are recommended to ascertain the accuracy
of the brake state mode!l currently used.

Off-axis flow. It is recommended that an experiment be conducted to
determine how rotor performance varies in off-axis flow.

Airfoil characteristics. More information is needed on airfoil characteristics
in the shallow stall regime. Further, it should be determined if these
characteristics change in the rotating environment of a turbine blade due to
centrifugal or other effects.
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